Page 646 - e-Book
P. 646
Yaneja, N., & Kaur, H. (2016). Insights into newer antimicrobial agents against Gram-
negative bacteria. Microbiology insights, 9, MBI. S29459.
Yanni, Y. G. et al. (2001). The beneficial plant growth-promoting association of Rhizobium
leguminosarum bv. trifolii with rice roots. Functional Plant Biology, 28(9), 845-870.
Yao, P. Y., & Vincent, J. (1969). Host Specificity In The Root Hair" Curling Factor" of
Rhizobium Spp. Australian Journal of Biological Sciences, 22(2), 413-424.
Yi, Y.Huang, W., & Ge, Y. (2008). Exopolysaccharide: a novel important factor in the
microbial dissolution of tricalcium phosphate. World Journal of microbiology and
biotechnology,24(7), 1059-1065.
Yu, S. et al. (2017). Optimization of siderophore production by Bacillus sp. PZ-1 and its
potential enhancement of phytoextration of Pb from soil. Journal of microbiology and
biotechnology, 27(8), 1500-1512.
Yuan, J.Raza, W., & Shen, Q. (2018). Root exudates dominate the colonization of pathogen
and plant growth-promoting rhizobacteria Root Biology (pp. 167-180): Springer.
Zahid, M. (2015). Isolation and identification of indigenous plant growth promoting
rhizobacteria from Himalayan region of Kashmir and their effect on improving growth
and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 6, 207.
Zahir, Z.Shah, M. K.Naveed, M., & Akhter, M. J. (2010). Substrate-dependent auxin
production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L.
under salt stress conditions. J Microbiol Biotechnol, 20(9), 1288-1294.
Zaidi, A.Khan, M.Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate
solubilizing bacteria. Acta microbiologica et immunologica Hungarica, 56(3), 263-284.
Zhu, J.Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus
availability in agricultural soils: A review. Science of the Total Environment, 612,
522-537.
636