Page 640 - e-Book
P. 640

Kumar,  H.Bajpai,  V.  K.Dubey,  R.Maheshwari,  D.,  &  Kang,  S.  C.  (2010).  Wilt  disease

                     management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by
                     bacterial combinations amended with chemical fertilizer. Crop protection, 29(6), 591-

                     598.
               Kumar, S.Verma, S., & Trivedi, P. K. (2017). Involvement of small RNAs in phosphorus and

                     sulfur sensing, signaling and stress: current update. Frontiers in Plant Science, 8, 285.
               Lambers, H., & Plaxton, W. C. (2018). Phosphorus: back to the roots. Annual Plant Reviews

                     online, 3-22.

               Lambrecht,  M.Okon,  Y.Broek,  A.  V.,  &  Vanderleyden,  J.  (2000).  Indole-3-acetic  acid:  a

                     reciprocal signalling molecule in bacteria–plant interactions.  Trends in  microbiology,
                     8(7), 298-300.

               Lemanski,  K.,  &  Scheu,  S.  (2014).  Incorporation  of  13C  labelled  glucose  into  soil
                     microorganisms of grassland:  effects of  fertilizer addition and plant functional group

                     composition. Soil Biology and Biochemistry, 69, 38-45.

               Lian,  B.Fu,  P.Mo,  D.,  &  Liu,  C.  (2002).  A  comprehensive  review  of  the  mechanism  of
                     potassium releasing by silicate bacteria. Acta Mineral Sin, 22(2), 179-183.

               Liu, S.-T. et al. (1992). Cloning of an Erwinia herbicola gene necessary for gluconic acid
                     production and enhanced mineral phosphate solubilization in Escherichia coli HB101:

                     nucleotide  sequence  and  probable  involvement  in  biosynthesis  of  the  coenzyme

                     pyrroloquinoline quinone. Journal of Bacteriology, 174(18), 5814-5819.
               Loper, J. E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by

                     Pseudomonas  fluorescens  Pf-5  New  Perspectives  and  Approaches  in  Plant  Growth-
                     Promoting Rhizobacteria Research (pp. 265-278): Springer.

               Mabood,  F.Zhou,  X.,  &  Smith,  D.  L.  (2014).  Microbial  signaling  and  plant  growth

                     promotion.Canadian journal of plant science, 94(6), 1051-1063.
               Machado,  R.  G.  et  al.  (2013).  Indoleacetic  Acid  Producing  Rhizobia  Promote  Growth  of

                     Tanzania  grass  (Panicum  maximum)  and  Pensacola  grass  (Paspalum  saurae).
                     International Journal of Agriculture & Biology, 15(5).

               Mahaffee, W., & Kloepper, J. (1994). Applications of plant growth-promoting rhizobacteria
                     in sustainable agriculture. Soil biota: management in sustainable farming systems., 23-

                     31.











                                                           630
   635   636   637   638   639   640   641   642   643   644   645